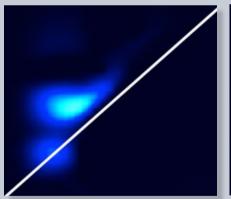
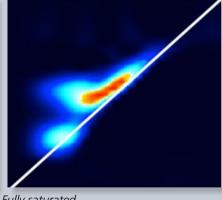
# T<sub>1</sub> and T<sub>2</sub> correlation for fluid typing and quantification

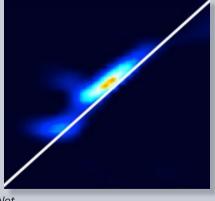
## **Application Note 4**



In recent years, lab based NMR core analysis researchers have begun to take advantage of enhanced signal-to-noise ratios (SNR) and shorter tau values to implement more data rich measurement techniques. In the past, extremely long acquisition times for T<sub>1</sub>-T<sub>2</sub> maps, or correlation plots, made them next to impossible to obtain. Current SNR levels have eliminated this limitation and have allowed researchers to begin exploring what can be learned from these maps.


Here, we show how T<sub>1</sub>-T<sub>2</sub> maps can be used to differentiate fluids with different viscosities. We demonstrate how water and bitumen can be discriminated with T<sub>1</sub>-T<sub>2</sub> maps in representative shale formations. Further, we show how measuring T<sub>1</sub> and T<sub>2</sub> at different temperatures allows us to differentiate between components of varying viscosity.


### Method


Initial inversion recovery CPMG T<sub>1</sub>-T<sub>2</sub> measurements were obtained on six shale samples in the as received state.

(Figure 1, left panel). The samples were then placed in brine under 2,000 psi of pressure for 48 hours to fully saturate the samples and the inversion recovery CPMG T<sub>1</sub>-T<sub>2</sub> measurements were repeated. (Figure 1, center panel). All measurements were performed on an Oxford Instruments **GeoSpec**2 2/75 2 MHz spectrometer with a 40 mm probe. The as received T<sub>1</sub>-T<sub>2</sub> measurement was then subtracted from the fully saturated T<sub>1</sub>-T<sub>2</sub> measurement to give the net T<sub>1</sub>-T<sub>2</sub> measurement (Figure 1, right panel).

Figure 1: T<sub>1</sub>-T<sub>2</sub> maps of shale core in various conditions







As received

Fully saturated

Net

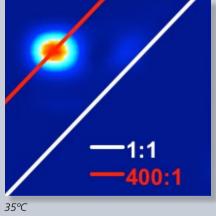






The Business of Science®

# T<sub>1</sub> and T<sub>2</sub> correlation for fluid typing and quantification




### **Results**

The  $T_1/T_2$  ratio can be used to determine the origins of the signal in net  $T_1-T_2$  maps [1]. In fluids with low viscosities,  $T_1$  and  $T_2$  are similar, but as viscosity increases  $T_1$  and  $T_2$  will deviate [2]. Higher ratios indicate more viscous materials such as bitumen while lower ratio contributions are likely due to water. In the  $T_1-T_2$  maps of Figure 1, high signal intensity is red while low intensity is shown in blue. The white diagonal line represents a  $T_1/T_2$  ratio of 1:1.







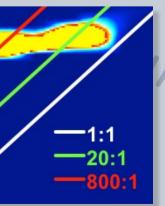
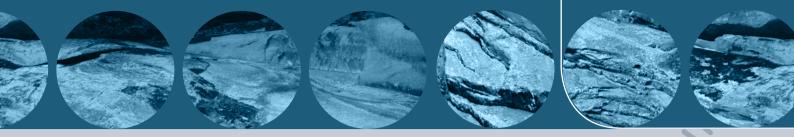



Figure 2 at various

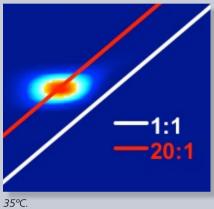

## **Temperature studies**

### **Solid Wax**

An initial measurement was taken on a solid wax sample at 35°C. Figure 2 shows  $T_1$ - $T_2$  maps of wax at different temperatures. The  $T_1$ - $T_2$  map shows signal at a high  $T_1/T_2$  ratio indicating a highly viscous material. When the sample was heated to 45°C the signal spread to lower  $T_1/T_2$  ratios. At a temperature of 70°C the sample was liquefied and the signal was present around the 2:1 line.

**Figure 2:**  $T_1$ - $T_2$  maps of wax at various temperatures.

## Application Note 4



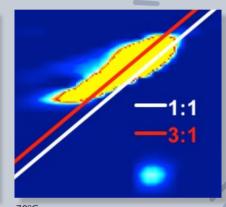
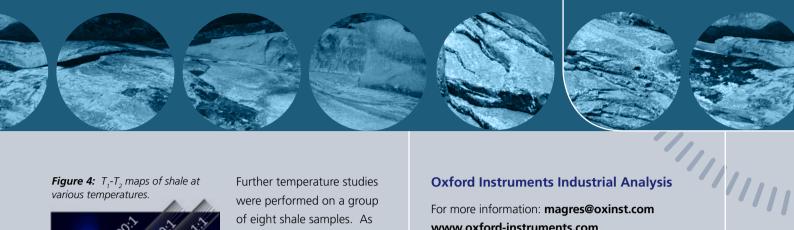


### Ozocerite

Figure 3 shows similar studies performed on ozocerite, a naturally occurring bitumen. At 35°C, signal appeared along the 20:1 line and at 70°C an extended signal area appeared near the 1:1 line. When the material becomes less viscous the  $T_1/T_2$  ratio shifts to lower values.

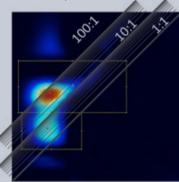
**Figure 3:**  $T_1$ - $T_2$  maps of ozocerite at various temperatures.

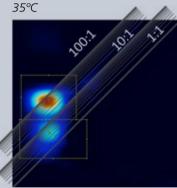


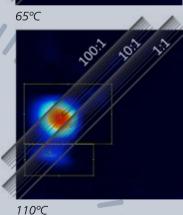





The state of the s





## T<sub>1</sub> and T<sub>2</sub> correlation for fluid typing and quantification


## **Application Note 4**



**Figure 4:**  $T_1$ - $T_2$  maps of shale at various temperatures.







Further temperature studies were performed on a group of eight shale samples. As with the previous studies, T<sub>1</sub>-T<sub>2</sub> maps were acquired but in this study the temperatures were 35°C, 65°C, and 110°C. Figure 4 shows a representative shale sample at these three temperatures. In the top panel, we see the results at 35°C with the bitumen populations appearing in the 10:1 to 100:1 ratio range and the water peak nearer the 1:1 ratio line. In the middle panel, the results at 65°C are shown. The two peaks begin to separate but show very little change. At 110°C, (bottom panel) the water has begun to dissipate indicating drying. The bitumen peak also decreases, moving towards the 1:1 ratio line, indicating a change in viscosity.

### References

[1] E. Rylander, P. M. Singer, T. Jiang, R. Lewis, R. McLin, S. Sinclair, SPE-164554

[2] N. Bloembergen, E. M. Purcell and R. V. Pound, Nature, 160, 475-476 (1947).

[3] Ali Tinni, 2013, personal communication. Work was supported by the Unconventional Shale Gas Consortium at the Mewbourne School of Petroleum and Geological Engineering, the University of Oklahoma.

### **Oxford Instruments Industrial Analysis**

For more information: magres@oxinst.com www.oxford-instruments.com

### UK

Tubney Woods, Abingdon, Oxfordshire, OX13 5QX, UK **Tel:** +44 (0) 1865 393 200 **Fax:** +44 (0) 1865 393 333

### **USA**

300 Baker Avenue, Suite 150, Concord, MA, 01742, USA Tel: +1 978 369 9933 Fax: +1 978 369 8287

#### China

Floor 1, Building 60, No.461, Hongcao Road, Shanghai, 200233, China

Tel: +86 21 6073 2925 Fax: +86 21 6360 8535

### **Green Imaging Technologies**

For more information: info@greenimaging.com www.greenimaging.com

#### Canada

520 Brookside Drive, Suite B, Fredericton, NB, E3A 8V2, Canada

Toll Free: +1 888 944 8462

Tel: +1 506 458 9992 Fax: +1 506 458 9615

This publication is the copyright of Oxford Instruments plc and provides outline information only, which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or regarded as the representation relating to the products or services concerned. Oxford Instruments' policy is one of continued improvement. The company reserves the right to alter, without notice the specification, design or conditions of supply of any product or service. Oxford Instruments acknowledges all trademarks and registrations. © Oxford Instruments plc, 2017. All rights reserved. Ref: MR/203/0717





The Business of Science®